
1. Introduction

Underwater acoustics is the study of the phenomena related to the 

generation, propagation, transmission, and reception of sound waves 

in underwater environments. It has been applied in underwater 

communication, target detection, marine resource and environment 

investigation using sound navigation and range (SONAR) systems, 

and the measurement and analysis of underwater sound source 

characteristics. The main representative field that utilizes underwater 

acoustics is remote sensing, wherein information on a target object is 

acquired indirectly from acoustic data. Machine learning, which has 

recently achieved substantial success in information acquisition and 

extraction, is actively utilized in remote sensing. In the previous parts 

of this work, the research trends in the machine learning techniques 

and theories that are mainly used in underwater acoustics and their 

applications in active and passive SONAR systems were reviewed 

(Yang et al., 2020a; Yang et al., 2020b; Yang et. al., 2020c). In this 

paper (the final part of this work), its application to the field of ocean 

parameter inversion is described.

2. Application of Machine Learning in the Field of 
Ocean Parameter Inversion

A sound wave measured in the form of a signal on a hydrophone 

contains information of the medium along the propagation path. The 

process of indirectly extracting necessary information such as ocean 

parameters by processing acoustic signals is called inversion. In 

underwater acoustics, inversion can be largely divided into the 

localization of surface vehicles and underwater vehicles (Parvulescu 

and Clay, 1965; Clay, 1966; Clay, 1987; Clay and Li, 1988; Bucker, 

1976; Baggeroer et al., 1993; Tolstoy, 1993); tomography inversion, 

wherein the inversion operation is performed on the physical 

properties of seawater, such as the temperature profile over a broad 

area of water (Shang, 1989; Tolstoy et al., 1991; Tolstoy, 1992); and 

geoacoustic inversion, which yields the composition, morphology, and 

geological properties of the marine sediment (Rajan et al., 1987; 

Lynch et al., 1991). The localization of underwater sound sources has 

been covered in the previous parts of this review work (Yang et al., 

2020b; Yang et al., 2020c). The results and trends of tomography 

inversion and geoacoustic inversion are reviewed herein.
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The ocean parameter inversion established in underwater acoustics 

is model based. Model-based inversion is a technique that compares 

the measured signal and simulated signal with a model and then adopts 

the model that yields the result most similar to the inversion solution. 

The matched field processing (MFP) technique is a representative 

technique. Here, the physical quantities of main interest in underwater 

acoustics are the sound speed profile and the environmental 

information related to the geological properties of marine sediment. 

These are essential factors for improving the prediction accuracy of the 

acoustic propagation model.

In the 1990s, the modeling of wave propagation in complex marine 

environments was realized, and model-based parameter inversion 

began to be studied extensively. To address the mismatch problem 

arising from sound source localization using an MFP, the sound source 

location and sound speed profile were inversed simultaneously 

(Collins and Kuperman, 1991). Subsequently, the inversion technique 

for the geoacoustic parameters of marine sediments was developed to 

address the mismatch problem (Collins et al., 1992; Lindsay and 

Chapman, 1993; Dosso et al., 1993; Gerstoft, 1994; Tolstoy et al., 

1998). Until recently, the inversion technique has been steadily 

undergoing development in conjunction with the most advanced signal 

processing and optimization techniques. This article aims to review the 

research trends in ocean parameter inversion using machine learning 

techniques.

As mentioned previously, the ocean parameter inversion technique 

underwent development in conjunction with the emergence of a 

representative model-based inversion technique (MFP) and exhibited 

significantly good results. However, when utilizing the inversion 

method using MFP, the ambiguity of the inversion solution increases. 

Furthermore, the method is not robust against model mismatch when 

the wave propagation environment becomes complex, such as in the 

case of shallow waters. In addition, the problem becomes more 

challenging in restrictive situations where a high spignal-to-noise ratio 

in the sensor array cannot be guaranteed. To address this, recently, 

studies with high-resolution results have been reported in conjunction 

with the development of a sparse signal representation in the spatial or 

temporal (frequency) domain, e.g., the compressive sensing (CS) 

technique. The fundamental theory underlying CS is that in a linear 

system, the raw signal can be recovered under appropriate conditions 

even when the raw signal has a dimension higher than that of the 

observed data (Candes and Wakin, 2008). The CS technique utilizing 

this principle has been applied to active and passive SONAR signal 

processing and ship radiation noise analysis. Further details are 

available in the special issue of the Journal of the Acoustical Society of 

America (Gerstoft et al., 2018). 

As observed from these cases, as in the case of problems of 

inversion of underwater acoustics, the most advanced signal 

processing theory was first applied to improve the localization 

performance of underwater sources in combination with MFP. It was 

then applied to the inversion of ocean parameters such as marine 

sediment properties and sound speed profile (Yardim et al., 2014; 

Bianco and Gerstoft, 2016; Choo and Seong, 2018). An example of a 

subsequent related study is sound speed profile inversion using 

dictionary learning which is an unsupervised machine learning 

technique. The existing MFP method is disadvantageous in that it is 

considerably complex and time-consuming in terms of computation. 

Moreover, it is challenging to apply the method with limited resources 

because it requires a number of sensors to acquire data. From this 

perspective, signal processing techniques using sparse signal 

representation, one of which is dictionary learning, have attracted 

attention in the field of underwater acoustic signal processing. 

Dictionary learning is a technique in which a dictionary is introduced 

from the measured data, sparse signal representation of meaningful 

information is extracted, and training is performed with the extracted 

information. In particular, when this is applied to ocean parameter 

inversion, to represent the sound speed profile as an optimum sparse 

signal, the dictionary of the shape function is developed to increase the 

resolution of the sound speed profile (Bianco and Gerstoft, 2017). The 

sound speed profile can be expressed as an expansion of the empirical 

orthogonal function for the sound speed variation. Bianco and Gerstoft 

(2017) developed a dictionary through a sparse signal representation 

that reduces the dimension of the empirical orthogonal function 

vectors. The training was performed using a clustering-based 

algorithm to obtain the recovered sound speed profile (Fig. 1).

Fig. 1 Sound speed profile reconstruction using the dictionary 

learning (Bianco and Gerstoft, 2017).
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Fig. 2 Comparison of sound speed profiles between observations 

and predictions produced by using multi-layer perceptron 

(Park and Kennedy, 1996)

An early machine learning-based approach to sound speed profile 

inversion used a multi-layer perceptron-based technique composed of a 

much shallower network than the state-of-the-art deep neural network 

models (Park and Kennedy, 1996; Jain and Ali, 2006). Park and 

Kennedy (1996) estimated the sound speed profile using a combination 

of sound speed records and environmental information, and a 

multi-layer perceptron structure, given that the sound speed profile can 

be estimated as an expansion of the empirical orthogonal function for 

the sound speed variation (Fig. 2).

Here, the environmental information includes date, sea surface 

temperature obtained by the infrared sensor of a satellite, seafloor 

temperature measured by a temperature sensor embedded in the 

seafloor, and time of flight between two acoustic sensors buried in the 

seafloor calculated using the wave propagation model to consider the 

multiple paths of a sound wave in the corresponding environment. With 

regard to the sound speed records, the large amount of data from the 

World Ocean Atlas constructed by the National Oceanic and 

Atmospheric Administration was used. It was demonstrated that sound 

speed profile prediction is possible almost in real time through a simple 

multi-layer perceptron structure using only two layers of the hidden 

layer. However, the temperature and time information they used as 

input factors had limitations: the mean record had to be stable and the 

acoustic model used to calculate the multiple paths was applicable only 

in a range-independent environment. The research results of Jain and 

Ali (2006) were not considerably different from those of the above 

research. However, they estimated the sound speed profile using 

surface observations from a mooring that were measured on an hourly 

basis for one year as input parameters, utilizing a backpropagation 

algorithm and multi-layer perceptron structure with two hidden layers.

Early machine learning-based approaches to geoacoustic parameter 

inversion (such as that for sound velocity, density of marine sediments, 

layer thickness, and damping coefficients) were also based on the 

expansion of the basis function. This is similar to the case mentioned 

above. Caiti and Jesus (1996) investigated the estimation of the 

seafloor's geoacoustic parameters from sound field measurements of 

the water layer. In particular, the Gaussian radial basis function was 

used to approximate the inverse function to speed up the computation. 

In addition, the results of inversion of sound velocity, damping 

coefficient, and density were demonstrated by applying the function to 

simulation data and marine experimental data measured using a 

horizontal towed line array. The results of their research exhibited very 

high efficiency in terms of inversion speed. However, there was a 

limitation: the method was applicable only when all the information on 

the depth, sound speed profile, and configuration of the source and 

receiver were provided.

Another approach to geoacoustic parameter inversion is to introduce 

neural networks into model-based inversion, which can be considered 

as an optimization problem. Benson et al. (2000) trained a neural 

network with the calculation data of the sound field of each sensor in a 

vertical line array using a wave propagation model in a shallow water 

environment. In particular, the spectral component of transmission loss 

was used as the input parameter of the neural network. In-situ 

experimental data were used to verify the neural network model. The 

distance and depth of the sound source and the sound speed and 

thickness of the marine sediment were estimated with high accuracy.

With regard to the exact physical quantity of marine sediments, 

traditionally, only sample information with sparse distribution has been 

obtained through core collection, which introduces the problem of 

uncertainty. From a probabilistic perspective, this uncertainty was 

quantitatively calculated by reflecting random characteristics using a 

multivariate probability density function or a joint ensemble moment. 

This can result in questions on the estimation results from places where 

data are unavailable. Research is underway to determine solutions 

using a machine learning-based approach. In particular, the 

geoacoustic inversion technique is gradually becoming sophisticated, 

e.g., using machine learning techniques for extraction of physical 

quantities such as porosity and hydraulic conductivity (Tartakovsky et 

al., 2008; Martin et al., 2015). Because existing porosity estimation 

methods using interpolation or regression did not sufficiently reflect 

seafloor topography or geological properties, Martin et al (2015) used 

the random forest (RF) technique, which utilizes multiple predictor 

variables, to predict the seafloor porosity (Fig. 3). They developed 

Fig. 3 Seafloor porosity prediction produced using machine learning 

(Martin et al., 2015)



374 Haesang Yang et al.

predictor grids that added several variables related to porosity to vast 

geological property data obtained from deep sea/marine drilling and 

combined them with RF, a tool for regression tree analysis. The results 

were compared with the existing porosity estimation results in terms of 

root-mean-square error, Nash-Sutcliffe efficiency, Benchmark 

efficiency, etc. Their proposed method demonstrated the highest 

prediction performance compared to the existing methods.

Finally, we provide a brief summary of the application of the 

inversion technique on sediment geology. The geological form of 

sediments is essential information for dredging to secure a route, 

laying submarine cables, and dredging of rivers to regulate flow. In the 

case of underwater and marine sediments, classification techniques 

based on machine learning and statistical methods have been 

undergoing continuous development. Starting from the early 

classification of surficial sediments using neural network architecture 

and statistical classifiers (Michalopoulou et al., 1995), recent 

classification techniques based on supervised learning that perform 

classification on the type of surficial sediment and grain size based on 

multi-beam SONAR, backscattered acoustic data, and bathymetry 

have been reported to display considerably high performance 

(Stephens and Diesing, 2014; Diesing et al., 2014; Buscombe and 

Grams, 2018). In particular, Stephens and Diesing (2014) selected six 

types of machine learning approaches (k-nearest neighbor, support 

vector machine, classification tree, RF, neural network, and Naïve 

Bayes) as supervised learning-based classification techniques for 

seabed mapping. The secondary features such as roughness, curvature, 

Moran's I, and Sobel filter were newly extracted from the water depth 

data and backscattered acoustic data, and the results of prediction of 

the type of surficial sediment were compared. Diesing et al. (2014) 

compared the classification results of surficial sediments and grain 

Fig. 4 Seabed substrate maps including bathymetry, backscatter 

strength, and machine learning and geostatistics results 

(Diesing et al., 2014)

sizes (Fig. 4) that were predicted by manual interpretation, image 

analysis using a 2D Fourier filter, geostatistics techniques, and RF 

(Fig. 4). The comparison indicated that the results could be improved 

by the ensemble technique (combining multiple techniques to produce 

the desired output). Buscombe and Grams (2018) proposed a fully 

connected conditional random field that can consider the relative size 

and proximity of backscattered acoustic data for substrate 

characterization and compare the results with those obtained by the 

Gaussian mixture model to evaluate the performance.

3. Conclusion

In this review, we examined the trend of research conducted by 

applying machine learning (including deep learning) to underwater 

acoustics and SONAR applications. It is evident that machine learning 

techniques need to be improved further for application in the areas of 

underwater acoustics, acoustical oceanography, and technologies 

related to SONAR through follow-up studies. Furthermore, the 

implementation of machine learning is likely to provide flexibility in 

future research directions and increase the applicability of the 

approach.

However, in the case of data-based techniques represented by deep 

learning, the problem wherein securing data including class 

information is essential based on the inherent characteristics of deep 

learning still remains. More specifically, in underwater acoustics, it is 

challenging to obtain such data, and understanding of the environment 

is essential. Therefore, in addition to the development of physical 

intuition and theory, the use of verified wave propagation models or 

statistical and mathematical models requiring a relatively marginal 

amount of data should be developed in parallel to overcome the above 

challenges and limitations.
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