
1. Introduction

Underwater acoustics is a scientific domain that involves the study 

of the phenomena of sound waves in water, including their generation, 

propagation, and reception. Specifically, the sound navigation and 

ranging (SONAR) system is utilized to investigate underwater 

communication and target detection and to study marine resources and 

the environment; further, it is utilized to measure and analyze sound 

sources in water. The main objective of underwater acoustics-based 

remote sensing is the indirect acquisition of information on underwater 

targets of interest using acoustic data. At present, highly advanced 

data-driven machine-learning techniques are being applied in various 

ways for extracting information from acoustic data. The techniques 

closely related to these applications are introduced in the first part of 

this paper (Yang et al., 2020). This paper presents a detailed review of 

the applications of machine learning in underwater acoustics and 

passive SONAR signal processing.

2. Passive SONAR Signal Processing 

2.1 Passive Target Detection and Identification

Signals measured by a passive SONAR system exhibit fluctuations 

owing to irregular noises in the ocean. This hinders target signal 

detection. The conventional signal processing method for detecting 

target signals is based on the Neyman–Pearson criterion (Nielsen, 

1991). As the probability distribution of the received signals, including 

the target signals, differs from that of the noise signals, the probability 

ratio that is set according to the presence of the target signal at the time 

of observation is compared with a preset value. This helps determine 

whether the target signal is included in the observed time period. This 

technique can be expanded to detect the target signal by 

comprehensively analyzing all the signals measured in the time 

domain of interest as well as signals observed at a specific time.

In general, techniques for detecting a target signal through 

comparison with a threshold value have a disadvantage: false alarms 

can occur frequently, particularly in the scenario of a low signal- 
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to-noise ratio. To overcome this problem, Komari Alaie and Farsi 

(2018) combined the time and frequency domain information of the 

measurement signals to derive an adaptive threshold for such signals. 

They used this threshold value to determine whether the target signal is 

included in the corresponding observed interval.

However, in passive SONAR, the use of a threshold to identify a 

target as described earlier is a detection technique that uses only the 

size-related features of the target signal. Shin and Kil (1996) 

developed a target identifier that defined and utilized the multifaceted 

features of a target signal in terms of various aspects to increase the 

accuracy of target detection. In the conventional target detection 

technique based on the signal size described earlier, the tendencies 

exhibited in the spectrogram of the observed signal are simplified, and 

the sum of the signal sizes corresponding to the frequency domain of 

interest in each time frame is used. In the study conducted by Shin and 

Kil, apart from these fundamental features, other features such as those 

related to the size/frequency statistics of the observed signal and the 

frequency of the target signal were integrated to utilize these as input 

vectors for several machine learning algorithms including neural 

networks. In conventional target detection, a process is required for 

identifying the detected target signal. However, in target identifiers 

that use multiple features of the target signal as mentioned in the 

aforementioned technique, target classification is achieved before 

detection (classify-before-detect method). The technique proposed by 

Shin and Kil delivered superior performance, compared to the 

performance of the conventional technique, particularly in low 

signal-to-noise ratio conditions.

The aforementioned studies have mainly used passive SONAR 

(binary classification) to determine whether the target signal is 

included in the observed interval. This type of classification can be 

extended further to the classification of various types of signals present 

in the ocean. Hemminger and Pao (1994) proposed a classifier that 

used neural networks to distinguish between six types of marine 

noises. In the process of detection or identification of a signal by a 

SONAR operator, a technique such as a short-time Fourier transform 

(STFT) that displays the temporal frequency variations of a signal of 

interest is often used in conjunction with the auditory information. 

With reference to this, the study conducted by Hemminger and Pao 

defined the features that reflected the visual information of the STFT, 

as follows. When the spectrum that constituted the STFT of the 

observed signal was compared in relation to the trend exhibited by the 

preceding cluster in each time frame, the STFT could be represented as 

a list of prototype numbers. The prototype numbers listed in this 

manner constituted the input vectors of the neural network. A classifier 

was developed according to the type of noise source to be classified. 

The type of noise source included in the test data was determined using 

a classifier that yielded the highest value among different classifier 

results.

While detecting a target signal using passive SONAR, a transient 

sound is detected for a period of time. This could be emitted by various 

sources such as biological sound or machinery noise. In general, a 

skilled SONAR operator is capable of classifying these transient 

sounds according to the source. Tucker and Brown (2005) extracted 

various features including human auditory characteristics reflected 

from timbre (Fig. 1) and proposed a transient sound classifier using 

these features. For the classification, timbre-related features that 

helped classify various types of sounds were selected based on the 

results of a classification experiment that classified various transient 

sounds present in underwater environments including biological and 

mechanical sounds. In addition, factors related to the material of the 

sound-generating target were explored and used as features. Finally, 

the features reflecting sound variability were calculated using a 

rhythmogram that reflected the temporal variability of transient sound 

(related to repeatability in the time domain). The feature vectors 

derived from the combination of features defined in various domains 

have a higher dimension than the specified data size. Among these 

vectors, the features that help identify the type of sound source are 

selected. As their study distinguished sounds included in a specific 

class from those in other classes, different features were selected 

according to the sound to be classified. These input feature vectors 

with reduced dimensions were combined with the k-nearest neighbors 

(KNN) algorithm to classify the type of sound. The classification 

performance obtained by combining and using features derived from 

various domains (including human sound perception) was superior to 

that obtained using statistical features of frequency variations 

Fig. 1 Overview of the training (a) and testing (b) procedures. 

During training, three kinds of features are computed for 

each example in the training set. During testing, the feature 

vectors for each transient class are computed, and a 

classifier is used to determine the confidence value for each 

class model. The class with the highest confidence value is 

considered as the label of the test example (Tucker and 

Brown, 2005).
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over time that were obtained from frequency features or spectrograms 

of the observed signals. This was demonstrated by comparing the 

receiver-operating-characteristics (ROC) curve of the identifier using 

each feature. Finally, they concluded the following. To identify the 

type of transient sounds, it was most advantageous to select and use a 

feature that was suitable for the research purpose by integrating the 

sound perception features, frequency features, and statistical features.

To distinguish the types of noise sources by using machine learning, 

the classifiers need to learn a large amount of data. However, in 

practice, there is a deficiency of passive SONAR data classified by the 

type of noise source. Meanwhile, passive SONAR data without 

classification are relatively abundant. Yang et al. (2018) and Ke et al. 

(2018) have conducted studies utilizing unclassified SONAR data for 

pre-training to increase the efficiency of supervised learning. Yang et 

al. (2018) used the values of the final hidden layer of the competitive 

deep-belief network (CDBF) (designed by them) as classifier inputs. 

This was unlike other existing methods that use passively defined 

feature vectors based on the experience of experts. A large amount of 

data is required to automatically extract features from the input vector 

(e.g. spectrum) that are effective for classification. Unclassified 

SONAR data are used for this purpose. In CDBF, a restricted 

Boltzmann machine (RBM) is trained on the probability distribution of 

the input data. This is a type of unsupervised learning that is performed 

using data without class labels. Then, using the classified data, the 

degree of sensitivity of the unit in the hidden layer of the RBM can be 

calculated according to the type of the noise source. Based on this, the 

units of the hidden layer can be clustered. The competitive layer is 

placed at the rear of the hidden layer, and training is performed to 

Fig. 2 The process of underwater acoustic target recognition (Ke 

et al., 2018).

increase the distinction between the clustered classes. Finally, the unit 

value of the competitive layer is used as the input vector of the support 

vector machine (SVM) to distinguish between types of ships for 

classification. This method has delivered a classification performance 

that is superior to those of methods using the Mel-frequency cepstral 

coefficient (MFCC), waveform, wavelet, or feature vectors based on 

auditory model.

Ke et al. (2018) also used unclassified passive data to improve the 

accuracy of learning performed with marginal amounts of classified 

passive SONAR data. In their study, the following four steps were 

used for classifying ships: (1) pre-processing, (2) pre-training, (3) 

fine-tuning, and (4) classification (Fig. 2). In the pre-processing step, 

only the effective components for data classification were extracted 

from the measured time-series acoustic data through the wavelet 

transform. These extracted components were transformed to the 

frequency domain and used as a pre-training input for the subsequent 

step. In the pre-training step, a multi-layered autoencoder was used. 

High-level features for noise source classification were extracted from 

this encoder. In the fine-tuning step, the trained autoencoder was 

applied to a marginal amount of classified SONAR data. Furthermore, 

the training was performed such that the high-level feature vectors 

extracted through the feature-separation layer increased the spatial 

distance according to the class. The result of the fine-tuning step was 

used as the input to the support vector machine (SVM) in the 

classification step. This method delivered a better classification 

performance than those of the existing methods that use MFCC as the 

input.

Wang et al. (2019b) fused features extracted from multiple domains 

to identify the types of marine noise sources (four types of ship noises, 

marine mammal sounds, and background noise). Furthermore, they 

combined these with a deep neural network (DNN). Typically, MFCC 

is used to identify noise sources. However, it was verified in this study 

that the Gammatone frequency cepstral coefficient (GFCC) is more 

advantageous for marine noise source classification. Furthermore, the 

GFCC was used as a part of the feature vectors. Modified empirical 

mode decomposition was applied to extract the feature vectors 

incorporating diverse information related to complex marine noise 

sources, from time-series signals. At this time, the features were 

calculated based on the magnitude of the decomposed signals and 

frequency variation, which were fused with the GFCC and used as the 

input vectors of the DNN. The DNN had a Gaussian mixture model 

(GMM) in the first layer and extracted the statistical features of the 

feature vector rather than those of the overfit feature vector. These 

were used to conduct supervised learning. The performance was 

improved significantly compared to the results obtained from the 

existing noise source classification methods that combine MFCC with 

limited information by using a simple classifier such as a GMM.

As mentioned earlier, it has been established that the performance of 

a skilled SONAR operator is superior to that of the target detection 

process based on the traditional SONAR signal processing technique. 

For example, an echo signal from a metal object has a timbre that is 
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different from that of an echo signal from a natural object, such as a 

rock, and humans can recognize this difference. In this regard, studies 

have been conducted to identify target signals from echo signals 

having different timbres depending on the material of the target object 

using active SONAR (Allen et al., 2011; Murphy and Hines, 2014; 

Young and Hines, 2007). Similar to these studies, Yang and Chen 

(2015) conducted a study wherein they tested the human capability to 

distinguish between artificially generated sounds and naturally 

occurring sounds using passive SONAR. Furthermore, they analyzed 

strategies for humans to recognize sounds according to the sound 

sources to improve the performance of the automatic identifier. In their 

study, experiments were performed to understand the human 

capabilities of auditory perception for identifying and distinguishing 

between artificial sounds (such as those of large ships, torpedoes, and 

underwater vehicles) and natural sounds (such as those from dolphins 

or rain), between sounds of surface ships and submarines, and between 

sounds from three ships. For the sound identification method used by 

the participants in this experiment, the following were defined and 

extracted from the observed signals: harmonic spectrum features 

associated with the tonal component of the noise source, equivalent 

rectangular bandwidth spectrum features associated with the timbre, 

and auditory cortical features associated with frequency variation 

characteristics over time. The features extracted over multiple domains 

had a high dimension. In each domain, principal component analysis 

(PCA) was used to reduce the dimension and then combine the 

features to be used as input values for machine learning. In this study, 

a logistic regression-based classifier was trained using the training 

data prepared for each class, and the performance of the classifier 

trained for each objective was evaluated using the test data. It was 

verified that the automatic target classifier was superior to the human 

participants in all the tasks. In particular, the performance of the 

automatic target classifier with feature vectors of lower dimension was 

better when sounds were more similar within a class or when the 

sounds significantly differed across classes. The automatic target 

classifier delivered the most inferior performance in the classification 

of artificial noise and natural noise and the most superior performance 

in the classification of noise from the three ships. In addition, they 

proposed a method of combining the classification experience of the 

human participant with the automatic target classifier for the task of 

artificial/natural noise classification in which the classifier delivered 

the most inferior classification performance. Furthermore, they 

verified that the classification performance of the automatic target 

classifier could be improved through similar combinations.

2.2 Passive Target Localization

2.2.1 Passive target arrival angle estimation

In general, a vertical/horizontal line array consisting of multiple 

sensors is used for target localization in underwater acoustics. In 

particular, when the target is located remotely, the elevation angle or 

the azimuthal angle (depending on the type of line array) of the target 

can be estimated using the time difference of arrival of the target noise 

incident on the line array. Hereinafter, in this review paper, the 

elevation angle and azimuthal angle of the target are collectively 

referred to as the target arrival angle. In the conventional approach for 

underwater acoustics, the similarity between the acoustic field actually 

measured in the line array and the replica field simulated according to 

the arrival angle with the plane wave assumption is assessed to 

estimate the arrival angle of the target. This angle can be estimated 

using the replica field that displays high similarity with the measured 

field (Jensen et al., 2011). This technique is highly robust against 

noise. However, it has a disadvantage, wherein a long line array is 

required to estimate the target azimuthal angle with high resolution. 

An adaptive beamforming method has been proposed to overcome this 

disadvantage. However, the adaptive beamforming method using a 

covariance matrix of a measured field has a disadvantage: the 

performance deteriorates when correlated target signals are estimated 

(Jensen et al., 2011).

Several techniques have recently been proposed for estimating the 

target arrival angle with high resolution using a limited-length line 

array in an environment with correlated target signals. Among these, a 

representative technique is compressive beamforming (Edelmann and 

Gaumond, 2011; Xenaki et al., 2014; Xenaki and Gerstoft, 2015). It is 

based on compressive sensing, which is designed to derive the solution 

of a (non-deterministic) linear system. In compressive sensing, the 

sparsest solution among the many solutions that satisfy the linear 

system is determined by minimizing the norm of signal  (Donoho, 

2006). The target arrival angle in underwater acoustics can be 

estimated as a linear system problem. It is advantageous as the arrival 

angle can be estimated with high resolution using limited observation 

by applying compressive sensing. However, in compressive sensing 

with compressive beamforming, there is a trade-off between the 

observed data proximity and the sparsity of the estimated solution. 

Therefore, there is a disadvantage: the hyperparameters that determine 

the priority between the sparsity and data-fitting of the solution need to 

be adjusted passively to derive the solution that is appropriate for each 

scenario (Park et al., 2017). Sparse Bayesian learning (SBL), an 

algorithm based on machine learning, is drawing attention as an 

effective method to address this problem (Tipping, 2001).

SBL has been proposed for the regression of a specified data trend or 

classification using Bayesian inference (Tipping, 2001). Similar to 

compressive sensing, SBL is applied when the measured data can be 

represented as a linear combination of specified bases (linear system 

problem). In this case, it is assumed that the base size and noise in the 

measured data follow a normal distribution. Unlike compressive 

sensing (in which  is directly and deterministically derived), in SBL, 

 is derived by first estimating the probability distribution and then 

using the distribution. As mentioned earlier, the problem of evaluating 

the arrival angle of an underwater target can also be established as a 

linear system: . Here,  denotes the measured data, and  

denotes the noise included in each acoustic sensor of the line array. 

When estimating the target arrival angle using SBL, the probability 

distributions of  and  (i.e., the signal size and noise variance) can be 
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extracted from the measured data. The arrival angle of the target signal 

incident on the line array can be evaluated using probability 

distribution. While performing beamforming based on SBL, the signal 

size and noise variance are repeatedly updated using the expectation- 

maximization algorithm (Tipping, 2001). The update rule used at this 

time is one of the key parts of SBL. However, in this review paper, 

rather than detailing the algorithm of SBL, we review the SBL 

modification method that is used to estimate the target arrival angle 

more robustly.

When measuring an acoustic signal in an actual experiment, the 

target signal is continuously recorded on the line array. Multiple 

measurements or multi-snapshots in the time domain can be used to 

obtain a reliable estimation of the arrival angle of the target signal. In 

particular, the target in an adjacent signal can be regarded as 

stationary in the underwater environments where the speed of sound 

waves is significantly higher than the target speed. Gerstoft et al. 

(2016) extended the existing SBL to utilize the stationary target 

signal recorded at the adjacent time. In this manner, the single 

measurement signal  and the corresponding target signal size  of 

the existing SBL were substituted with the adjacent multiple 

measurement signals   ⋯  and corresponding target 

signal size   ⋯ , respectively. Here,   is a signal 

measured at a line array at a specific time, and   is the corresponding 

target signal. In addition, in the study mentioned earlier, it was 

assumed that the noise had the same variance regardless of the sensor 

and measurement time. Gerstoft et al. (2019) extended the SBL such 

that these noises could have different magnitudes depending on the 

sensor and measurement time. In addition, they verified through a 

simulation that the extension was capable of robustly estimating the 

target arrival angle, compared to the existing method. In addition, 

Nannuru et al. (2019) extended the conventional SBL to account for 

the scenario with different matrices   according to different 

frequencies. They verified the effectiveness of the extension method 

based on actual measurement data (SWellEx-96). 

For estimating the arrival angle of a target, SBL has the advantage 

of automatically deriving values without the need to adjust 

hyperparameters separately, unlike in the case of compressive sensing. 

However, as the linear relationship used in SBL utilizes a replica field 

for a preset target signal arrival angle, a basis mismatch occurs as in 

compressive beamforming. This lowers its performance. To address 

this problem, Das (2017) proposed two methods for the off-grid sparse 

Bayesian arrival angle estimation algorithm and analyzed the error of 

each method based on the Cramer–Rao lower bound (CRLB). The first 

method is based on the fact that a randomly incident target signal can 

be expressed by the Taylor series of a replica field having the arrival 

angle set at equal intervals. The difference is calculated between the 

actual arrival angle derived using the Taylor expansion process for the 

incident angle and the preset arrival angle. After adding this to the 

estimated variable of the SBL and updating it, the proposed method is 

more robust against a basis mismatch than the existing method. In the 

second method, it is assumed that the target signal incident on the 

Fig. 3 Comparing the conventional beamforming (CBF) spectra 

(denoted in blue) from two frequency bins [(a) 2625 Hz and 

(b) 2725 Hz] and the incoherent average of the CBF spectra 

from all frequency bins (c) with the estimated spectrum 

[denoted in dotted black in (a), (b), and (c)] by the proposed 

wideband direction-of-arrival estimation algorithm (Das and 

Sejnowski, 2017).

line array at an arbitrary angle can be expressed through linear 

interpolation of the replica field with respect to a preset arrival angle in 

the vicinity. The weights of the replica fields distributed at uniform 

angle intervals, which are used for linear interpolation, are additionally 

estimated by the SBL. The second method is more robust against basis 

mismatch than the existing SBL method. However, its performance is 

inferior to that of the first method. Subsequently, Das and Sejnowski 

(2017) extended the Taylor series-based off-grid sparse Bayesian 

arrival angle estimation method to include the broadband signals. This 

method was applied to the measured data. As shown in Fig. 3, a more 

reliable estimation of the target arrival angle was achieved by utilizing 

the common incident angle information of the target signal having 

various frequency components rather than using individual incident 

angle information.
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In the case of an SBL-based beamforming technique using multiple 

measurements over time, the arrival angle of a target is estimated 

without considering the correlation of adjacent measurements. Zhang 

and Rao (Zhang and Rao, 2011; Zhang and Rao, 2013) extended the 

existing SBL technique to consider the temporal correlation of the 

target signal observed in the line array signal at the adjacent time. They 

verified that this method outperformed the other techniques.

Furthermore, in one of the techniques for estimating the target 

arrival angle in air, the images obtained by combining the STFT of the 

acoustic signal measured using the microphone array and the phase 

component according to the frequency in a specific time frame were 

used as input values for a convolutional neural network (CNN) 

(Chakrabarty and Habets, 2017). This technique was able to estimate 

the arrival angle of a signal without generating a replica field based on 

an understanding of the physical properties. It can also be applied to 

signals measured with a line array that is installed underwater. 

However, to date, the estimation methods of the arrival angle of an 

underwater target using machine learning have been developed by 

modifying the update rule used in SBL according to the particular 

scenario, with SBL as the basic framework, as described in the 

examples of previous studies. This is because it is challenging to 

obtain the underwater measurement signals necessary for learning, 

unlike in the case of air. However, further research is likely to be 

conducted in the future on the automatic extraction of the arrival angle 

estimation rule from the data with higher availability of the signal data 

necessary for learning.

2.2.2 Passive target localization

In target localization, the wave propagation phenomenon in the 

underwater waveguide considering the sound speed profile, properties 

of the seafloor, and bathymetry are reflected. Furthermore, the replica 

field on the line array is calculated according to the location of the 

potential sound source. The results are compared with those of the 

measured field. This is called matched field processing (MFP). The 

research on MFP has grown rapidly because of the development of an 

acoustic propagation model that can simulate a real sound field in a 

specified marine environment. MFP is still used as a method of 

localizing underwater sound sources. However, there is a limitation in 

its use: the accuracy of the replica field is lowered when inaccurate 

marine environment information or an inappropriate acoustic 

propagation model is used (Jensen et al., 2011).

The application of machine learning to underwater sound source 

localization is known to have started in approximately the early 1990s 

(Ozard et al., 1991; Zion et al., 1991). These studies trained highly 

shallow feedforward neural networks (FNN) with simulation or 

measurement data and differentiated the range and depth information of 

underwater sound sources. The machine learning model used in these 

studies was a very simple model that considered the sum of linear 

weights as an output. Furthermore, in that period, there was limited 

understanding of how the optimal weight can be obtained using a 

nonlinear algorithm. This limited the amount of computation. With the 

development of machine learning, more advanced and improved models 

(compared to the initial ones) are being applied. Furthermore, an 

increasing number of studies are being published on the localization of 

underwater sound sources using data obtained directly from more 

complex marine environments or data simulated by models. Lefort et al. 

(2017) applied a regression-based localization technique for the tank 

experiment data and simulation data to examine whether underwater 

sound source localization was possible with a machine learning 

technique in a varying underwater channel environment. They reported 

on a few potential applications. In a study using in-situ measurement 

data, Niu et al. (2017a) directly trained the ship range estimation 

function with data obtained by a line array (The Santa Barbara Channel 

Experiment). In their study, the sound field measured by the line array 

and path of the ship sailing along a certain route were used as the training 

data, as shown in Fig. 4(a). At this time, several ships were operating on 

the same route, and specific ship noise and the corresponding route were 

used for training. Other ship noises were used for testing the 

performance of the proposed machine learning-based ship range 

estimation technique. In particular, ship noise had multiple frequency 

components in the low frequency band. Furthermore, the extracted 

vectors for each frequency were concatenated and used as the final input 

vector such that all the frequency components of the ship noise could be 

used for ship range estimation. As mentioned earlier, the GPS-based 

ship route was specified according to the sound field measurement time 

such that the range between the ship and line array for each input vector 

could be determined. In the case of MFP using a replica field, the 

performance rapidly deteriorated as the range of the ship increased. 

However, the machine learning-based classifier delivered superior 

performance even for the distant ships (Fig. 4(b)). Subsequently, Niu et 

al. (2017b) applied the proposed algorithm for other data (Noise09 

experiment). They investigated the performance of the machine 

learning-based ship range estimator according to the frequency 

Fig. 4 (a) Operation area and two shipping lanes in Santa Barbara 

Basin and the experiment geometry with three cargo ships 

transiting the operation area. The vertical line arrays are 

denoted by triangles. (b) Localization results with frequency 

band 53-200 Hz by Bartlett MFP (left); SVM classifier 

(middle); and FNN classifier (right) (Niu et al., 2017a).
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bandwidth of the ship noise or the supervised learning method 

(classification and regression). The method of classification with the use 

of multiple frequencies delivered superior results.

Furthermore, occasionally, in cases such as the operation of a passive 

SONAR system for military purposes, it is more important to accurately 

evaluate specific information, such as the depth of the target, rather than 

its overall spatial information. This is because the surface vessel and 

submarine can be distinguished according to the depth. This is another 

example where a simulated sound field based on an acoustic propagation 

model is mainly used (Conan et al., 2016; Conan et al., 2017; Liang et al., 

2018). In particular, Conan et al. (Conan et al., 2017) conducted a study 

to distinguish the depth of a sound source by using the propagation 

characteristics of sound waves in a specified environment. In their study, 

the normal mode method was used, which is one of the representative 

acoustic propagation models. The depth of the sound source was 

extracted by converting the measurement sound field into the mode 

space. They verified that the sound source depth can be estimated with 

higher accuracy using this approach based on binary classification, 

compared to using MFP. In contrast, Choi et al. (Choi et al., 2019) 

conducted a study to formulate a rule for estimating the depth of a sound 

source directly from the measured data using machine learning without 

a physical understanding of the propagation characteristics of the waves 

(Choi et al., 2019). In their study, the covariance matrix of the sound 

field measured in the vertical line array (VLA) and the mode space 

covariance matrix were used as the input values for machine learning. 

The mode space covariance matrix is the covariance of the space vector, 

which is a transformation of the sound field measured in the line array 

into the mode space based on the normal mode method. They derived a 

binary classification function for classifying surface vessel and 

submarine noises through representative machine-learning algorithms 

such as random forest, SVM, FNN, and CNN. In particular, most of the 

combinations using real/imaginary parts of the covariance matrix as 

input values exhibited high accuracy. For these studies on the sound 

source depth classification based on machine learning, a line array 

measurement field was required for learning. In their study, to overcome 

the challenge of acquiring a sufficient amount of actual measurement 

acoustic data necessary for learning in an underwater environment, 

simulation sound field results were used that had been obtained using the 

normal mode method in a specified marine environment. At this time, 

simulated sound fields were used for training and testing that had been 

generated in various scenarios by varying the range and depth of the 

source and signal-to-noise ratio.

While estimating the ship range using a machine-learning technique, 

such as FNN, the classifier may be overfitted to the training data as the 

learning process is repeated. This may not yield superior performance 

on the test data. Chi et al. (2019) prevented the classifier from being 

overfitted to the training data by adding regularization to the test data 

while training on ship range estimation. As the input, they used the 

covariance matrix of a vectorized sound field proposed by Niu et al. 

(2017a). In their study, with reference to the line array, the linear 

relationship between the range of a ship sailing at constant speed and 

the measurement time was optimized for each learning process. By 

using the optimized linear relationship and estimated range error as a 

regularization of the cost function, the study verified that the method 

prevented the classifier from being overfitted to the training data. It 

also verified that the classifier exhibited superior generality, compared 

to the MFP or the overfitted classifier.

While estimating the location of a sound source by applying FNN, it 

is necessary to train the weight and bias of all the layers connecting the 

input and output values based on the specified learning data. Wang and 

Peng (2018) extracted a spread factor that determined the probability 

distribution of data using a generalized regression neural network 

based on the data and performed localization of a sound source. In this 

case, as in the previous study, the normalized covariance matrix of the 

sound field measured by a VLA was used as the input value. In 

addition, a supervised learning method was applied that assigned range 

information to all the sound fields at the training stage. Thus, their 

study derived an algorithm that could estimate the location of a sound 

source by determining a spread factor that could provide the best 

probabilistic description of the training data with the class information. 

The proposed algorithm was applied to the Swellex-96 experiment 

data. This revealed that the method was superior to sound source 

localization using FNN or MFP.

In practice, the neural network-based sound source range estimation 

algorithm in underwater acoustics has a limitation: the weight and bias 

must be trained using a limited number of sound fields because of the 

deficiency of data. To address this problem, Wang et al. (2019a) 

proposed a deep transfer learning method. In their study, a simulated 

sound field was generated using an acoustic propagation model under 

various ocean environments where the ship range was to be estimated. 

Then, the simulated sound field was normalized according to the line 

array sensor, and the frequency and sound source range was estimated 

based on a CNN that used the normalized field as the input image for 

training. In addition, a limited amount of in-situ measurement data was 

used to fine-tune the weight and bias of the CNN that first underwent 

training through a simulated sound field. This deep transfer learning 

method was applied to the data measured in the deep-sea environment 

near China. The results verified that the method outperformed the 

existing MFP or CNN approaches based on deep learning.

Meanwhile, the underwater MFP works similar to the beamforming 

technique in terms of signal processing. The exception is that in the 

former, the replica field calculated for the line array according to the 

location of the sound source is generated by reflecting the sound wave 

propagation in the underwater waveguide. Gemba et al. (2019) used 

SBL, a machine-learning algorithm, to estimate sound-source location 

with high resolution (depth and range from the line array). They 

applied the SBL-based MFP to both the simulated and actually 

measured sound fields and demonstrated its effectiveness. In addition, 

Huang et al. (2018) used a different type of DNN for the localization of 

a sound source. The crucial difference between the two proposed 

DNNs is in the presence of a direct design of features to be used for 

learning. In the first method using the directly designed features, the 
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eigenvalues of the covariance matrix of the sound field observed with 

the line array were defined as the features, and these were combined 

with the neural network to localize the sound source. In particular, a 

time delay neural network was used to consider the temporal 

relationship of the measured field. Hence, the past and future 

(predicted) sound fields were used as the input values to estimate the 

present position of the measured field. In their study, regression-based 

supervised learning was used because the location information of the 

sound field used at the training stage was known, and the location of 

the sound source in a continuous space was derived. Accordingly, the 

objective function of this machine-learning technique was defined 

based on the distance between the estimated and actual sound-source 

locations. In the second method, the time-series signals measured by 

various sensors in the line array were used as the input values. Similar 

to a CNN, the filter for the sound source localization was 

automatically trained based on data. Furthermore, the features 

according to the purpose were automatically extracted and combined 

with an FNN to localize the sound source. Their study verified that this 

DNN-based sound source-localization algorithm outperformed the 

conventional MFP. In particular, the first method using directly 

designed features delivered the most superior performance, and the 

performance was evaluated under many scenarios. The performance of 

the sound source-localization algorithm based on machine learning 

was lowered when the ocean environment of the training data was 

different from that of the test data (e.g. difference in the bathymetry). 

This performance degradation can be reduced by training with data 

acquired from various environments.

As described earlier, underwater sound-source localization based on 

conventional MFP or machine learning uses spatially sampled sound 

pressure such as sound fields measured by a line array. Meanwhile, a 

study investigated the source localization by using the sound pressure 

measured by a sensor and utilizing broadband source signals with a 

machine-learning algorithm (Niu et al., 2019). In their study, the 

absolute vector of the sound pressure for each frequency was 

normalized and used to utilize the sound pressure measured in various 

frequency bands. In addition, when the magnitude of the sound source 

was frequency dependent, to reduce the effect of the sound source 

magnitude on the sound source localization, the above process was 

repeated at predetermined frequency-band intervals. This information 

was derived from the measured sound pressure and then applied to a 

DNN. The training for range information exploration was conducted 

by dividing into two stages depending on the range interval. 

Furthermore, an acoustic propagation model was used to generate 

large amount of acoustic data that was necessary for the training in two 

stages. This sound source-localization algorithm was applied to the 

data measured in the Yellow Sea. It delivered superior localization 

performance, compared to the performance of MFP.

3. Conclusion

In this paper, we have reviewed the history and evolution of passive 

SONAR applications from the studies employing conventional 

techniques to the research employing recent machine-learning 

techniques for target detection, classification, and localization.

In a passive SONAR system, target detection/classification uses and 

integrates multiple features from time, frequency, and other domains to 

overcome the limitations of the probability distribution analysis and 

threshold comparison-based techniques for signals that contain both the 

target signal and noise. The information of the target is extracted from 

the measured signals. The target identifier models are of various types in 

terms of use, ranging from simple binary classifiers to models imitating 

human sound perception capabilities and deep learning models capable 

of multiple classifications. These models are combined with 

conventional theoretical models. In addition, these complement each 

other in terms of the sound sources, environmental characteristics, and 

research objectives for continuous development. Various techniques are 

used for localization in passive SONAR systems, ranging from the 

conventional localization techniques represented by array signal 

processing and MFP to classification and regression models using 

compressive sensing, SBL, and machine- learning techniques based on 

measurement data. However, the satisfactory performance of these 

machine-learning techniques can be ensured only when sufficient 

quality data are secured. Therefore, methods are applied for 

simultaneously using the actual measurement data and data generated 

from the acoustic models. Although this paper describes techniques for 

utilizing machine learning only for passive SONAR systems, these 

techniques can be directly applied to active SONAR systems. This 

aspect as well as the passive SONAR system for detecting and 

classifying target signals will be discussed in the future.
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